Coastal Throughput Modeling

Debra R. Green
Computer Specialist

US Army ERDC

Coastal & Hydraulics

Laboratory

Perspective

- History
 - Former throughput models/shortfalls
 - Why develop CITM?
- Present
 - development timeline/current capabilities
- Future
 - Future uses of CITM class model
 - Development of small port models

Methodologies for JLOTS M&S

In the 1990's there were several different methodologies for throughput prediction and analysis

- Linear algebra
- Virtual reality
- Integrated model concepts (time stepping)

Force Projection – "a system of systems"

- Very complex
- Very non-linear
- Extremely affected by environmental conditions

CITM was developed (1998-2001) with RDT&E funding as a time-domain tool to help provide accurate answers

Purpose

Tool to evaluate force projection capabilities when deep-draft ports are unavailable

- **♦ Conventional JLOTS**
 - Lift-On/Lift-Off
 - · Roll-On/Roll-Off
- **◆** Emerging technologies
 - Theater Support Vessel (TSV)
 - Enhanced small ports
- **♦ Identification of limiting factors to throughput**
- **♦** Objective site selection

LOTS System Characteristics

- Nodes (ships, shore discharge)
- Links (lighter types)
- Experience (crew training levels)
- Environment (sea state, bathymetry, tides, beach gradient)
- Compatibility matrix (interoperability issues)
- Operations (approach & moor, cast-off & clear, loading, unloading, traveling)

Operations Flow Diagram

Features of CITM

- PC Based
- Fortran Code
- Uses data from previous JLOTS operations
- Allows re-positioning of ships and offload sites
- Models current watercraft and off-load nodes
- Incorporates ICODES input for ship manifest
- 1 minute time intervals
- Cumulative/recent throughput output

Features of CITM (cont.)

- Takes into account various factors that can affect throughput, to include the following:
 - Seastate conditions
 - •Bathymetry
 - Tide levels
 - Night operations
 - •Crew experience levels
 - •Ship/lighter/site compatibilities
 - •Beach clearance capabilities

Example of Nearshore Bathymetry

Test Case Scenario for Ft. Story and Eglin AFB

Offshore Nodes

- 1 Fast Sealift Ship (FSS)
- 1 LMSR

Onshore Nodes

- 1 ELCAS
- 2 Bare Beach Sites (Splashpoints)

Conditions

- 6 total days simulated
- Month of February
- RO/RO and LO/LO

Environmental Data

- Bathymetry, 1/2 mile grid
- Wave Heights (historical)
- Tidal fluctuations (ADCIRC)

Ft. Story, VA

Eglin AFB, FL

Typical CITM Output Showing Prioritized Offload

■ M1 Tanks ■ 5-Ton Trucks ■ M198 Howitzers

CITM Support to War Planners

- Real World:
 - Balkan theater of operations throughput analysis (classified)
- War-fighter Exercises:
 - Ulchi Focus Lens (UFL)
 - Throughput analysis
 - JLOTS site evaluations
 - East coast Korea
 - RSO&I
 - Throughput analysis
 - JLOTS site evaluations
 - East and West coast Korea

Converting CITM to Extend

- Obstacles to overcome
 - Learning a new software language
 - CITM was written in Fortran
 - Needed to change from being a timedriven simulation to an event-driven simulation
- Advantages
 - Flowchart
 - Algorithms
 - Data

Converting CITM to Extend

- Screenshot of Database Viewer
- Includes:
 - Lighter characteristics
 - Ship characteristics
 - Sea-state data
 - Delay times for lighter operations
 - Ship's cargo

Converting CITM to Extend

Development of Future Modeling Tools for Force Projection

Capabilities must include

- throughput rate prediction
- site selection
- RPE impact assessment and tool selection

Future Force Projection From the Sea (Small Ports)

Three different aspects to site selection

- throughput potential
- potential threat (bridges, tunnels, topography)
- maneuver advantage

Example Scenario

Scenario 1

Scenario 2

Scenario 3

